ON THE DERIVATION OF VLASOV’S
SHALLOW SHELL EQUATIONS AND

THEIR APPLICATION TO
NON SHALLOW SHELLS

L. M. Elias

DEPARTMENT
OF
CIVIL
ENGINEERING

GPO PRICE $

CESTI PRICE(S) $

> 07U
Hard copy (HC) 5 L —

Microfiche (MF) < &3

ff 653 July 85 SCHOOL OF ENGINEERING
MASSACHUSETTS INSTITUTE OF TECHNOLO

Sponsored by
The National Aeromavtics and Space Administration
Research Grant NGR-22-009-059-(251)

Cambridge 39, Massachusetts

s NB8sadd 122
g FR
(PAGES) (CODE)
E NIy 9
= /. )
g (NéS/A czﬁ%x 'Z/AD NUMBER) (CA%RY)




| ON THE DERIVATION OF VLASOV'S
SHALLOW SHELL EQUATIONS AND THEIR
APPLICATION TO NON SHALLOW SHELLS

by Z. M. Elias*

* Assistant Professor, Department of Civil Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts.



ACKNOWLEDGMENTS

This work was performed at the Department of Civil Engineering,
Massachusetts Institute of Technology, and was supported by Grant

No. NGR-22-009-059 from the National Aeronautics and Space Administration.




1. Introduction

The original formulations of the linear theory of thin shallow shells
due to Marguerre], Vlasov2 and Reissner3 and subsequent treatments4’5’6’7
have in common the two following assumptions:

(i) The tangential components of displacements may be neglected in

computing the changes of curvature of the middle surface.

(ii) The transverse shear stress resultants may be neglected in the

tangential equilibrium equations.

The assumption concerning the shallowness of the shell in references
1 and 3 is that:

(iii) The squares and the product of the slopes of the middle surface
with regard to a reference plane aré negligible with regard to
unity.

In reference 2 the Gaussian curvature is neglected in Gauss' equation
for the middle surface but the same final result could Se obtained if
assumption (ii) were used instead. In fact, in Novozhilov's treatment6
no geometrical assumptions are made but it is assumed in addition to (i)
and (ii), without being more specific however, that

(iiii) The dependent variables are rapidly varying functions.

The various derivations reduce the shallow shell problem to the
solution of a system of two differential equations for the normal dis-
placement w and the stress function Y. In derivations not using assump-
tion (iii) the differential operators of these equations are surface
operators that reduce to the plane operators of the other derivations
upon making use of the shallowness assumption.

The system of two equations for w and ¢ is dual in the sense that,



in the homogenous system, one equation is transformed into the other by
means of the static geometric ana]ogy8’9.

It will be shown in this paper that by making use of the static
geometric analogy Vlasov's equations of shallow shells may be established
solely on assumption (i) applied in a dual form.

A study of the accuracy of the Marguerre-Viasov equations when applied
to shallow shells may be found in reference 10. Vlasov's equations, how-
ever, as mentioned earlier, apply under certain conditions to non shallow
she]]sﬁ. Their application to cylindrical shells through Donnell's
equation is well known and its accuracy is studied in reference 11. The
statement of Goldenweiser, however, that Vlasov's equations apply to arbi-
trary shells of zero Gaussian curvature is refuted by Novozhﬂov6 by
means of an example involving a long cylindrical shell.

On the basis of the derivation to be presented here a study of the
nature of the error in Vlasov's shallow shell equations will be made and
the order of magnitude of this error for non shallow shells will be

established depending on the geometry of the shell and on the boundary

conditions.

2. Basic Equations

In orthogonal curvilinear coordinates (El) and (52) the vector

equilibrium equations take the form
(az N'I)s'l + (a'l Nz)sz + (X-I (12 p = 0 (]a)

— — . — —_ — — — =90
(1b)

where N& and Né are stress resultant vectors and ﬁ} and M, are stress




couple vectors corresponding to the coordinates £ and 52,-respective1y.
p and m are force and moment load intensities per unit area of the middle
surface. a% and ag are components of the surface metric tensor and are

defined through the relation

. & = of ¢l + of el (2)

A comma is used to indicate differentiation.
The homogenous system (1) is solved in terms of two vector stress

functions F and G in the form

a, Ny = F,y (3a)
a Ny = - Fyy (3b)
ap My =G,y + 75y x F (3c)
ag My = -G,y -7y x F (3d)

Strain displacement relations may be established in vector form by re-

quiring the expression
R L R LR (4)

to represent the virtual work per unit area of the middle surface of the

external forces acting on an infinitesimal parallelepiped cut out of the

she]]g. This leads to the relations

G.'I g'l = U," + F!] X I (Sa)
OL2 EZ = U’Z + F,z X J (Sb)

@ Xp = 1



where u is the displacement vector and w the rotation vector.

The analyogy between (3) and (5) is the basis of the static geometric
analogy. The strain vectors satisfy compatibility equations dual of the
homogenous equilibrium equations, i.e.,

(0‘2 §2)’1 - (a] ‘)—(‘])92 =0 (6a)
(012 62),1 - (Ot] E]),z + Fayp X 0y Xy - Fsg X 0y X = 0 (6b)
The duality between the stress and strain vectors and displacement and

stress function vectors is summarised in Table 1.

Table 1

Using as vector base the unit vectors

- "1

t] = (7a)
%
r,

T, - 2 (7b)
%9

n-= t] X t2 (7¢)

N;» Ny, Fu G, E}, Eé, u and w are represented in the form




() = ( )t o+« ) fé t( ), n (8a)
and ﬁ}, ﬁé, }i, }é in the form
() =-( )o Tyt ( )yt + ( )3 n (8b)

Scalar equations may be obtained by means of differentiation formulas for
the unit vectors and may be found for example in reference 9.
For stress-strain relations a linearly elastic homogenous and

isotropic material is considered. The complementary strain energy and the

strain energy density functions are taken, respectively, in the forms9
Wy = 5 [N2 = 201 + v)(Nyy Noo = Npo Noo)]
N 2Eh 11 722 12 721
(9a)
6 2
+ =3 [M% - 201 + v)(Myy My, - Mip Mpp)]
and
_ Eh 2
We = o7 le” - 200 - v)(egy epp - €5 £5)]
2 (1-v7)
12 - 21 - ) o
X - - VI3 X - Xy9 X
24(]_\)2) 11 422 12 *21
where N, M, ¢ and x are defined through the notation below
( ) = ( )'” + ( )22 (10)
The corresponding stress-strain relations are
. - SWN 1 = ], (]]a)
ij aNij i=1,2,3
awN i=1,2
X = oMy j=1,2 (11b)

or



j 2

N.. = _
M _ BWE 1= ], 2 (-I-Id)
ij Sxij i=1,2,3

Eqs. 11 imply a shell without transverse shear deformation and without

couple stress-stress couples, i.e.,
€p3 = 0 (12a)

M

13

= M23 =0 | (12b)

The static geometric analogy is extended to the stress strain relations
.with the result that we is dual of NN through the correspondance of
table 2 in which

3

Eh

D s e
12(1-v9)

(13)

AV -V

D -(ER)""
we -wN
Table 2

3. Stress Compatibility and Strain Equilibrium Equations

Using the stress-strain relations to express appropriate parts of
the tangential components of the vector compatibility equations in terms
of the stress resultants and stress couples and taking account of the
equilibrium equations, there results, in lines of curvature coordinates,

the four equations below




a, N
2 23
Eh G2 X13 + st + (1 +v) ‘“"—"‘RZ + (1 +v) ay Py = 0 (14a)
ay N
1 113
-Eh A Xp3 * N,] + (1 +v) R] + (1 +v) o Py =0 (14b)
oy Na3 S X3
D~ Xep ~ (1 -v) R2 =0 (14c)
ay N a
113 X
[).I T Xey < (1 - v) ]R 23 =0 (14d)

Eqs.

1

(14) may also be obtained by first expressing the tangential equi-

librium equations in terms of the strains then by taking account of the

compatibility equation.

It is noted that if the static geometric analogy is applied to Egs.

(14a) and (14b) without the load terms there results Egs. (14c) and (14d),

respectively.
The normal components of the

equations take the dual forms

2 N

vector compatibility and equilibrium

Mg = Mgy + g R§1 - 2:2 ) =0 (15a)
€1 " €12 " ?2 ( :;2 - ﬁf] ) =0 (15b)
(ap Nyzday * (g Nozloy - o 0 21] * 2;2 - P3) = ?]5 |

Cc
(0 Xp3)57 = (o Xy3)sp * a7 o ﬁ?z * é;] ) =0 (15d)

Eqs. (15c) and 15d) are in their original form whereas Egs. (15a) and



(15b) are obtained after using the stress-strain relations in the original
compatibility and equilibrium equations, respectively.

Solving the 4 equations (14) for Ny3s No3s Xq3 and 55, then Tletting

h2 h2
R R
1 2
and making use of the stress-strain relations
- Eh
N = =S £ (]73)
and
M
X D(T+v (17b)
obtain
€1 h2
oy Ny3 = Dlxsy - R ) - TR 1P (18a)
€59 h2
ay Ny3 = D(xs, - Ry TR, %2 P2 (18b)
- ] (N,, + " ) + 1+y (18¢c)
M X23 = TER M R, Eh %1 Py
M
1 *2 1+v
0 X3 == gp (Nsp # R, )T ER %2 P2 (18d)

Substituting into Eqs. (15c-d) the result may be written in the form

N N 2 p o P
11 22 h rag! 172 N
DAY - - +p,-DALE - ( Yoy + ( Yso| = 0
R, R, 3 R 2oy, [ Ry R, 2
{19a)
1 X22 . X911 .1 1+y _
ANY R R TERARMY thaya, [lay py)ay * (o) Pp)spT= 0

(19b)




where A is Laplace's operator in the middle surface:

a( ), (),
A >=a1;2[( Za] ‘),1+(¥“—‘72——2-),% (20)

and

R AARE ALY,
Ap ( ) = aq0y !:( R, Jag + R )2 (21)

It will now be shown that the terms in € and M in Eqs. (19) are negligible.

N N X X

For comparing these terms to (ﬁll + ﬁgg) and (§§§_+ ﬁll), respectively,
1 2 1 2

the most unfavorable case is that of a rapidly varying state stress in

which it may be assumed that

a () = o2l < o4l (22)

R™h

where R is the order of magnitude of the smaller of R] and R2. With use

of Eqs. (17) there comes

12R
o MM < o) (23b)
12R

- If it is permissible to write

N N
1A 22 N
, o= 0 () (24a)
Ry R, R
and
X2 X11_ _ 4 (X
R R, 0 (%) (24b)

Eqs. (23) show that the terms in € and M in Eqs. (19) are negligible with
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N N X X
regard to (ﬁll-+ ﬁgg and (ﬁgg + ﬁll), respectively, with a relative error
1 2

1 2
of order %n The same conclusion is reached in the case of a rapidly

varying state of stress without requiring Eqs. (24) to hold if it is

admitted, as will be established later, that

= 0 (—jg;iii) (25a)
and
N=0 (—132—%—4 (25b)
It is then possible to write
Ae h |
Ay € =0 (5°) =0 (—— ax) (26a)
R R VizR |
and
M h
ApM =0 (=) = 0 (—— AN) (26b)
R R VT2 R
Eqs. 26 show that the terms in € and M in Eqs. (19) may be neglected
with a relative error of order VTD . The loading terms are not
2 R

generally negligible in Eq. (19b) but the py and p, terms are in Eq. (19a).
In non rapidly varying states of stress the errors due to neglecting
the terms in ¢ and M in Eqs. (19) are even smaller. Thus Egqs. (19) may

be replaced with

N N
1M V22 _
DAX'—R—]—--R—2—+p3-0 (273)
i X22 X1y 1+v _
AN R, ' Ehoja, [(ay py)sy + (0 Py)sp] = 0

1
(27b)
The deletion of the terms in e, Py and p, in Eq. (19a) and
of the term in M in Eq. (19b) is formally equivalent to the deletion of
the same terms in Eqs. (18a-d). However, the corresponding error is of

order < %-in all four equations, only if bending stresses are comparable




to membrane stresses as occurs in rapidly varying states of stress. This

restriction does not apply to Egs. (27).

4, Viasov's Shallow Shell Equations

Viasov's shallow shell equations may be based on a single assumption
applied in a dual form. This is assumption (i) of the Introduction which
is restated below in a more specific way together with its dual.

The tangential components of displacement Uy and u, may be neglected
in computing the changes of normal curvatures and twist X110 X220 X12
and Xp1 - They may not be neglected in the changes of geodesic curvatures
X13 and xp3-

The stress functions G] and 62 may be neglected in the expressions
of the in-plane stress resultants Nl]’ N22, N12 and N2]. They may not
be neglected in the transverse shears N]3 and N23.

The above assumption used with the conditions of no transverse shear

deformation in the scalar strain-displacement relations yields

u u u
Wy = 222 2~ 3,2 (28a)
] o R2 (12
u u u
3,1 1 3,1
wy = - —l e 13 (28b)
2 U,-I R-l ~ 0L1
On W - Q w u [0
_ 27,1 1,271 _ 1 3,1 1,2
(29a)
oy W - Qa w u [0 ]
_ 1 71,2 2,1 72 _ 1 3,2 2,1

1



The dual relations are

G

A - B L W
1 0y R 0,
A N L B N
2 Oy R.I o
o F - F G
I AT Sy R I 3,2
Npg = Njp aa Mt o, Ly (T
1% 1 2
o, F - a F G 01,2
NP - 22,17 1,271 _ p ] 3,1 ,
Naz = N2z oy o V2o * &g, Lol ) * o 6

(30a)

(30b)

%1
o

(31a)

2]

(31b)

The superscript p in Eqs. (31) refers to a particular solution of the

equilibrium equations.

From Eqs. (29) obtain

X=X ¥ xpp = - Ay

= = p

and substituting into Eqs. (27) these take the form

D AA us + Ap G3 =Py - p*

(32a)

(32b)

(33a)

(33b)
(34)

(35)

1 MNP 14y
h AA G3 - AR u3 S i W [(az p])s] + (0.] Pz),2]
where p p
N N
o* - N, 22
R, Ry
e 0 ()
1 AR M ARAY)
Ap() = [( sy + 5]

12
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Eqs. (33) agree with those found in the literaturez’ 6

but contain in.
addition the terms in Py and Po and the terms deriving from the particular
solution of the equilibrium equations. These are zero in the classical
derivations.

Additional relations deriving from the basic assumption will now be

obtained. and x,, are expressed exactly as
X2 21

1 w3

X2 ® " aray (o) wy 1+ 0y 5wy - R, (36a)
1 w3

2% ara, (0 wy 5 +ap g ) + 3 (36b)

2

wy and w, are expressed in terms of the displacements through Egs. 28.
w3 is determined in terms of the translational displacements through Eq.

(15b) which takes the form

h2

1
3 * e [lag up)sp - {oy updsyd - 3

( X12 X21
%

- ):0
) Ry

(37)
It is apparent that the contribution of the terms in X12 and X21 1‘nk2
Eq. (37) to the right hand side of Eqs. (36) is of relative order-{%f—
and should be neglected. Upon neglecting Uy and u, by the basic
assumption the result is to let wg = 0 in Egs. (36) which in terms of

uq take then the form

o ol
I B 20, LM
X12 = %1 T 7 o Lug 12 - o, 13,27 T u; 11 (38a)
The dual relations are
a o
- NP, = poo . 1 o 2] I Y
Nig = Njp = Nyy - Ny o ay 163,12 7 g, f3,2 7 6311
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and yield Ny, = Ny, if the particular solution is such that Nb, = ND..

5. Error in Shallow Shell Equations

The error under consideration here is that made in obtaining Eqs. (33)
from Eqs. (27). The latter are obtained from Eqs. 19 with an error of
order —%— and are considered exact for the purposes of this discussion.

The source of the error is the basic assumption concerning the
de1étion of G] and 62 in the stress-stress function relations and the
deletion of Uy and u, in the curvature-displacement relations.

The deletion of G] and 62 from the expressibns of the in-plane stress
" resultants would not violate the homogenous equi]ibrium equations if the
same deletions were made in the transverse shears. This is not permissible
however, although the transverse shears are not obtained through the
stress functions but through Eqs. (18a-b). The result is in general a
violation of the homogenous force equilibrium equations which in the
tangential equations is of the same order of magnitude as the transverse
shear terms. That the transverse shears are negligible in the tangential
force equilibrium equations is one of the basic assumptions used in
previous derivations of the shallow shell equations. Here this is implied
by the basic assumption. In order however not to make the nature of the
error depend on the particular solution it is necessary that N?3 and Ng3
be also negligible in the tangential equilibrium equations. A convenient
way for achieving this is to identify the particular solution of the
equilibrium equations with a membrane solution.

In a way dual of the preceding the deletion of Uy and u, from X17»
Xp2s Xjp and Xp7 but not from X13 and xo4 violates in general the

curvature compatibility equations by amounts which in the two tangential




equations are of the same order of magnitude as the X13 and X23 terms.

A consequence of the preceding is that the membrane solution cannot
in general be obtained exactly through stress-stress function relations
of the form (31) and (38b) and the inextensional solution cannot in
general be obtained exactly through strain-displacement relations of the
form (29) and (38a).

A case of exception to the preceding remark is that of shells of
zero Gaussian curvature. If p{ and p§ denote the fictitious load com-
ponents that would be necessary to maintain tangential equilibrium

without transverse shears when Eqs. (31) and (38b) are used it is found

that
¥=- L G3’] (39a)
P R, o
G
_ ] 3,2
PR, o, (390)

For shells of zero Gaussian curvature p? = p§ = 0 and Eqs. (31) and (38b)
satisfy identically the tangential equilibrium equations of the membrane
theory. Similarly Eqs. (29) and (38a) satisfy identically the dual
tangential compatibility equations of inextensional deformations. This

makes it possible to obtain the membrane solution by letting D = 0 in

Eq. (33a) and the inextensional solution by letting ;h = 0 in Eq. (33b).

Now the error caused by neglecting in Eq.(27a) Uy and u, in x is

compared to the error of order —%— caused by neglecting Aé e in Eq. (19a).

The strain-displacement relations for €11 €229 X713 and X992 take

the form

u2) + —Eé— (40a)

15



€ u + 2 u +
22 O 2,2 01 1 R2
] Uy Us 1 o2 , W Uz 2
X = [( 2 )s + . ( 2 )]
]] o R-‘ 0t1 ] a2 R2 0!.2
(40c)
] up 3,2 R U3 .1
Xop = [( 2-),, + 2= )]
22 a, R2 Ay 2 a R] 0
(40d)
from which it is possible to deduce
€ = 1 [(on, Uy)sy + (aq u,)s,] + ! y Yu
01 O %2 Y179 % H2/e2 R R, "3
1 %2 1 2
(41a)
and
R 0o Uy %y Up
- a] az [( R] )s'l + ( R2 )az]' AU3 (4]b)

Assuming that R1 and R2 are not rapidly varying functions of the
coordinates such that it is possible to write

()s
(), =0 (=) i, =1,2 (42)
Ry 773 R
and assuming that the terms in u; and u, in Eq. (41a) are 0(e), the
contribution of U and u, to x is seen to be (—%—) and is negligible in
Eq. (27a), as Ap € in Eq. 192, with a relative error of order —%%—.
Similarly the contribution of G, and G, to By in Eq. (27b) is in
general comparable to the contribution of Ap M in Eq. (19b) and of relative
h
order -
The above order of magnitude analysis fails in the case where € is

of a smaller order of magnitude than the u, and u, terms in Eq. (41a) and

in the dual case concerning M. Leaving these cases for a subsequent

16
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discussion it appears from the preceding that if an error of order greater
h

than —— is involved in obtaining Eqs. (33) from Eqs. (27) it is made in
N N X X

neglecting G] and G2 in ( R]] + R22 ) and Uy and Uy in ( R22 + R]] ).
1 2 1 2

This is in accordance with the result found earlier that the membrane and
inextensional states of stress cannot, except for shells of zero Gaussian
curvature, be obtained exactly through Eqs. (33a) and (33b), respectively,
by Tetting D = 0 and —— = 0.

In fact, the case referred to above where ¢ is of a smaller order
of magnitude than the Uy and u, terms in Eq. (41a) and the dual case
concerning M occur, respectively, in inextensional deformations in which
e = 0 and in the homogenous membrane solution in which M = 0. In the
first case the error caused by neglecting Uy and u, in y is not in gen-
eral negligible in the term DAy in Eq. (27a) and in the second case the
error caused by neglecting G] and G2 in N is not in general negligible

in the term é: in Eq. (27b). It appears therefore that for non shallow

shells both the inextensional solution and its contribution to the equi-
Tibrium equation (27a) are in non negligible error as are both the
homogenous membrane solution and its contribution to the compatibility
equation (27b). While for parabolic middle surfaces the inextensional
and membrane solutions are obtained exactly the error remains in their '
respective contributions to Eqs. (27a) and (27b).

An illustrative example of the preceding is that of a non shallow
circular cylindrical shell bounded by two generatrices and two circular
arcs, behaving uniformly in the longitudinal direction and as an arch in
the circumferential direction. The bending of such a shell is similar

to the bending of an arch and may be assumed to be inextensional. Although
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the general inextensional solution may be obtained exactly for Us and is
in that case an arbitrary function of the circumferential angle, the error
in neglecting the circumferential displacement 'in DAy in Eq. (27a) is not
negligible. A correct use of Eq. (27a) would involve y as obtained from
the inextensional solution without neglecting the tangential displacement.
What is characteristic of this example is the uncoupling of the
Tongitudinal from the circumferential action of the shell. This uncoup-
1ling will be encountered later on as a limiting case of a weak coupling.
By contrast to the membrane and the inextensional states of stress
_ for which the terms DAy and —%ﬁ—-AN are negligible in Eqs. (27a) and
(27b), 'respectively, there exists a state of stress, generally referred
to as the edge zone state of stress or the boundary layer, in which the
bending and stretching stiffness of the shell are coupled through the

dual relations

N N
_ 11 22
Dax = 0(- ) (43a)
1 2
and
1 oy X22 X1
AN o ) (43b)

After neglecting Ups Uy, Gy and G, Eqgs. (43) take the form

En3
75— 8 b uy = 0 (4g G3) (44a)
_]EF A DGy =0 (A ug) (44b)

The behavior of u, and G4 upon differentiation as inferred from Eqs. (44)

and the errors caused by neglecting Ups Uy, G] and G2 in Eqs. (27) will




now be shown to depend on the nature of the operator AR’ on the geometrical
nature of the boundary and on the boundary conditions.

Choosing for convenience R as a reference length it is possible to

write

2
a( ) = o(-E5 1) (45)

R
where 8 is a non dimensional number which may be thought of as a factor
of increase upon non dimensional differentiation in at least one direc-
tion of the middle surface. If the middle surface, and consequently Bps
are elliptic the highest derivative terms of Ap contain in any system of
surface coordinates second derivatives with regard to both coordinates.

There follows with use of Eq. (45) that

2
pg( ) =0 (AL - 0(%4) (46)
Eqs. (44) yield
2
3 4 B™G
Eh B _ 3
—5— —— u, = 0 ) (47a)
12 R4 3 R3
2
4 B-u
1 B _ 3
— —— G, = 0( ) (47b)
Eh R4 3 R3
For Eqs. 43 to be compatible it is necessary that
82 = o( V12 ) (48)
G3 and us are then related through the relation
2
6, = 0(—2— u,) (49)

19



and from Eqs. (49), (32) and (17) there comes

X = o(——'{“hz e) (50a)
and
N = o(—{—?— M) (50b)

Eq. (50b) is dual of Eq. (50a) and may also be obtained from it through
the stress-strain relations.
It is consistent with Eq. 50a that the contribution of uy and u, to
~

e in Eq. (41a) is of the same order of magnitude as the contribution of

us. There follows

-1

Ups Uy = 0(B u3) (51a)

Eq. (51a) makes the contribution of u; and u, to X11° Xpp and x;, Of

relative order Similarly to Eq. (51a) it is possible to write

Vi R

-1
G], 62 =0(8 G (51b)

3)

and the deletion of G1 and G2 in.N]], N22 and N]Z causes a relative
h

Vi2 R

An illustrative example of the preceding is a dome like shell

error of order

subjected to self equilibriating edge loads.

For hyperbolic and parabolic middle surfaces AR is also hyperbolic
and parabolic, respectively, and the behvaior of the state of stress
depends on the geometry of the boundary and on the boundary conditions.

The canonical form of the second derivative terms of a hyperbolic Ap is

2
5 g , where b and n, are curvilinear coordinates corresponding to
M "2




Tines coinciding with the two families of asymptotic 1ines of the middle
surface. For boundary conditions specified on an asymptotic line

n, = constant the variation of the state of stress in the ™ direction
may be governed by the variation of the boundary conditions in the same
direction. For boundary conditions such that differentiation in the n
direction does not change the order of magnitude, the increase in order
of magnitude due to AR is caused by one differentiation only as compared
to two differentiations in the elliptic case. An example is a hyperbolic
paraboloid bounded by generatrices.

For a parabolic Ap the canonical form of the second derivative terms
2
3

is 5 where n is a coordinate corresponding to the single family of

3
"
asymptotic lines of the middle surface. In this case boundary conditions
on asymptotic lines may be such that no change in order of magnitude is
caused by Bp- An example is a cylindrical shell having two generatrices
as part of its boundary.
Instead of no change in order of magnitude upon differentiation in

the N direction, there may actually be a change by a factor 0()\) where

A is defined through the relation

30 _ 20
0 - &

4 is the arciengh in the i direction. For A = g the order of magnitude
analysis is similar to that of the elliptic middle surface. The case
X < 1 however is of particular interest for its occurence in practical
applications.

Letting, as before, g dencte the factor of increase upon non dimen-

sional differentiation with regard to Ny it is possible to write



2
M) = o(-E50 (532)
R
yooxteE ()
ap( ) = oAb L) (53b)
R
where
i =1 for the hyperbolic case (54a)
and .
i =2 for the parabolic case - (54b)

Eqs. (44) take.the form

3 4 i 2-1
Eh 8 _ A B
R 0(- 3 G3) (55a)
4 i 2-1
1 B = a2 B
R o 23 us) (55b)
and are compatible only if
21 = o(a1 ) (56)
where
u = N2 —%— (57)

G3 and uy are related by the same order of magnitude relation as in the

elliptic case, i.e.,

6, = 0(-E2 ) (58)
3 12 3
x and N are related to ug and G3, respectively, through the relations
2
Bugy

Ko iy = 0 () (592)
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8%,
N = 465 = 0(—=—)
there follows
X = O(JEI%- N)

Eh

and using the stress-strain relation (17a)
€
x = 0( V12 -+

Eq. (61) is the same as in the elliptic case.

however that if, as is usually the case, -%%-
N N
11 22 N
+ < 0(—5)
and
X22 1 X
R, -t R < Mg
1 2
To show this, it is possible to write
N N i 21
11 22 A~ B
+ = Ay G, = 0
R] R2 R 73 R3

whereas N is as given in Eq. (59b).

N N .
11 22 i_-i N
+ =0(x B &)
R] R2 R
similarly
X2 . X1 i1y

For determining the order of magnitude of Uy and u, in comparison to u

23

(59b)

(60)

(61)

It should be noted

There comes

< 1, then
(62a)
(62b)
65) (63)
(64a)
(64b)

3
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it is possible to write using Eqs. (61), (59a) and (56)
. . u ’
e=o( 87 D) (65)

This is another case where € is of a smaller order of magnitude than the
individual terms on the right of Eq. (41a). Eq. (65) requires then the
larger of the uy and U, terms, or both, in Eq. 41a to have the same order

U3
of magnitude as =— , i.e.,

U Uy = 0(87T uy) (66)

L is not as

Eq. 66 is of the same form as in the elliptic case but B~
small. The relative contribution of Uy and u, to the changes of curva-
ture and twist is then, as the relative contribution of G1 and G2 to the

in-plane stress resultants, 0(8'2). It is recalled that

2
g2 = () 3 in the hyperbolic case (67a)
and 1
_7 5o =% in the parabolic case (67b)
B "= (A" n)
whereas
-2 _ -1 _ h . s
B "=y = ——— 1in the elliptic case (67¢)
iz R
The case —%— << 1 is one of weak coupling between the bending and

stretching stiffnesses of the shell. An example is that of a long
circular cylindrical shell bounded by two generatrices and two cross
sections. If edge loads varying as sin —%5- are specified, where 2 is
the length of the shell and x is the length coordinate along the genera-

trices then form Eq. (52)

. _Tma
X = (68)




where a is the radius of the cross section. Identifying R with a in Eq.

(57) obtain

w= V12 —%— (69)
and from Eq. (67b) the order of the error is

g2 = ] (70)

A Vu
The error increases with decreasing A. For A <1 the shell is in the

range called long]2

. It may be noted, however, that being long is not
an intrinsic property of the shell but is related to the degree of
variation of the load. The example of the cylindrical shell in a state

of arch behavior discussed earlier is a limiting case in which X = 0.

Conclusion

The derivation of Vlasov's shallow shell equations may be based on
a single assumption applied in a dual form. This is that the tangential
components of displacement U, and u, may be neglected in computing the
changes of normal curvature and twist X171 X225 X712 and X1 and that
the stress functions G] and.G2 may be neglected in computing the in-plane
stress resultants N]], N22, N]2 and N21'

The equations developed here agree with Vlasov's equations but
contain in addition the tangential load components and a particular solu-
tion of the equi]ibriﬁm equations.

The error involved in applying Vlasov's shallow shell equations’to
non shallow shells is generally non negligible when seeking non rapidly
varying states of stress such as the membrane and inextensional states

of stress. An exception to this occurs for parabolic shells.
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For a state of stress satisfying Eqs. (43), which is referred to as
an edge zone state of stress, the error is more significant for hyperbolic
and parabolic shells than for elliptic shells if part of the boundary
coincides with an asymptotic line of the middle surface and if the corres-
ponding boundary conditions involve non rapidly varying functions. In
the elliptic case the error is of the same order of magnitude as that
inherent in the basic equations of thin shells whereas in the hyperbolic
and parabolic cases considered above the error is of a larger order of
magnitude though acceptable in practical applications if the shell is
thin enough.

The orders of magnitude of the error in the three cases discussed
above are obtained through Eqs. (67). When the boundary of a hyperbolic
or parabolic middle surface does not coincide partly or totally with
asymptotic lines, the behavior of the edge zone state of stress is simi-
lar to that of the elliptic shell. Since, in addition, the membrane
and inextensional solutions of parabolic shells may be obtained exactly
through Vlasov's shallow shell equations there results that thesé equa-
tions may be used to obtain with the same accuracy as above the total
state of stress in the practically important cases where it is a super-
position of the membrane, inextensional and edge zone states of stress.
This may also be done with a slightly larger but often practically
acceptable error if part of the boundary coincides with an asymptotic
line. An illustration of the preceding is the application of Donnell's
equation to circular tubes and non shallow cylindrical shell roofs.

The accuracy of Vlasov's shallow shell equations cannot be expected
to experience a discontinuity when passing continuously from a shell of

positive Gaussian curvature to shells of zero and negative Gaussian




curvature. The orders of magnitude of the error shown in Eqs. (67) are

then to be understood in the light of this remark.
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